PHYSICOCHEMICAL PROPERTIES OF CONCENTRATED SOLUTIONS OF SOME ALKALI METAL HALIDES IN AOUEOUS **THIOUREA SOLUTIONS**

RAMAMURTHY PALEPU *, GLEN WORTH and GERRARD MARANGONI

Department of Chemistry, University Coilege of Cape Breton, Sydney, Nova Scotia BIP 6L2 (Canada)

(Received 19 January 1988)

ABSTRACT

Viscosity, density and ultrasonic velocity measurements of some alkali metal halides in 1 M thiourea solution at four different temperatures have been determined. The viscosity data are analysed in terms of various viscosity equations to obtain *B* coefficients. Ionic viscosity coefficients, hydration numbers, apparent partial molar volumes and free volumes are calculated and discussed in terms of solute-solvent interactions. Activation parameters of viscous flow are calculated and discussed in terms of structure-breaking or making properties of the electrolyte solutions.

INTRODUCTION

This paper is part of a series on the physicochemical properties of aqueous ternary systems of alkali metal halides [l-4]. The aim of the present investigation was to measure the density, viscosity and ultrasonic velocities of some alkali metal halides in aqueous thiourea solutions in the range 298-313 K. The results of such measurements may constitute a basis for discussion of the effect of electrolytes on the structure of the solvent. Free volume is a fundamental property to be considered when explaining the variation in physicochemical properties of aqueous electrolyte mixtures [5,6]. Ultrasonic velocity measurements, along with viscosity and density values, can be used to calculate free volumes (V_f) .

EXPERIMENTAL

Analytical reagent grade samples of alkali metal halides were obtained from B.D.H. and Merck and were dried at 383 K for 5 h before being used.

^{*} Author to whom correspondence should be addressed.

Thiourea was crystallised from ethanol and then dried under vacuum at 333 K. All solutions were prepared on a molar basis in degassed nanopure water (specific conductivity 8×10^{-7} mhos). A 1.0 M thiourea solution was used as a stock solution. Viscosity, density and ultrasonic velocity measurements of various electrolyte solutions in the concentration range 0.05-2.5 M were obtained by the methods and with the equipment described previously [1,2]. Apparent partial molar volumes of the electrolytes at 298 K were calculated from the densities, measured with a Sodev densimeter Model 03D. The temperature of the cell compartment was controlled at ± 0.001 K with a Sodev circulating waterbath model CTL. Since all solutions must be free of large particles, before measurement solutions were filtered through Millipore filters (type HA, pore size 0.45μ m).

RESULTS AND DISCUSSION

Viscosity *B* coefficients have been found to be valuable in measuring the size and shape effect of the solute as well as structural modification induced by solute-solvent interaction [7,8]. Viscosity *B* coefficients were obtained by three different procedures. A modified Jones-Dole equation [9]

$$
\eta_{\text{rel}} = 1 + BC + DC^2 \tag{1}
$$

for higher concentrations of the solute was used to calculate *B* coefficients from experimental relative viscosities, using the least-squares method. Viscosity data were fitted into the Goldsack-Franchetto equation [lo]

$$
\ln[\eta_{\text{rel}}(1+XV)] = XE\tag{2}
$$

where E and V are parameters characteristic of the electrolytes and X is the mole fraction of the electrolyte. The values of E and V were obtained by means of non-linear least-squares methods and approximate values of *B* coefficients were obtained using the relation

$$
B = (E - V) / 55.51
$$
 (3)

The *B* coefficient values were also obtained following the procedures of the Breslau-Miller equation [11]

$$
V_{\rm e} = \frac{-2.5C + \left[(2.5C)^2 - 40.2C^2(1 - \eta_{\rm rel}) \right]^{1/2}}{20.10C^2}
$$
(4)

and the average \overline{V}_e values thus obtained were fitted into the following equation for 1 : 1 electrolytes

$$
B = 2.90\overline{V}_e - 0.018\tag{5}
$$

TABLE 1

Salt	Eqn. (1) a		Eqn. (2) \overline{b} Eqn. (3) $^{\circ}$		Eqn. (1)		Eqn. (2)	Eqn. (3)
	B	D	\boldsymbol{B}	\boldsymbol{B}	B	D	\boldsymbol{B}	B
	$T = 298 K$				$T = 303 \text{ K}$			
LiCl	0.1357	0.0166	0.1309	0.1272	0.1344	0.0158	0.1336	0.1316
NaCl	0.0925	0.0165	0.0927	0.0978	0.0915	0.0179	0.0916	0.1003
NaBr	0.0573	0.0190	0.0526	0.0598	0.0662	0.0159	0.0649	0.0704
Nal	0.0429	0.0023	0.0422	0.0317	0.0714	0.0050	0.0695	0.0620
KF	0.1331	0.0144	0.1319	0.1320	0.1276	0.0231	0.1231	0.1161
KCl	0.0194	0.0004	0.0186	0.0039	0.0235	0.0050	0.0228	0.0117
KBr	-0.0295	0.0104	-0.0258	-0.0258	-0.0159	0.0093	-0.0241	-0.0345
KI	-0.0476	0.0102	-0.0496	-0.0669	-0.0378	0.0087	-0.0390	-0.0533
RbCl	-0.0244	0.0118	-0.0269	-0.0352	0.0013	0.0040	0.0005	-0.0129
CsCl	-0.0461	0.0095	-0.0506	-0.0530	-0.0018	0.0095	-0.0135	-0.0223
	$T = 308$ K			$T = 313 K$				
LiCl	0.1360	0.0153	0.1351	0.1307	0.1370	0.0153	0.1357	0.1337
NaCl	0.0911	0.0142	0.0876	0.0908	0.0909	0.0190	0.0859	0.0913
NaBr	0.0981	0.0140	0.0929	0.0922	0.0916	0.0204	0.0914	0.0986
NaI	0.0989	0.0088	0.0887	0.0919	0.1241	0.0138	0.1173	0.1065
KF	0.1227	0.0314	0.1230	0.1213	0.0998	0.0450	0.0992	0.1169
KCl	0.0328	0.0013	0.0313	0.0207	0.0434	0.0030	0.0414	0.0322
KBr	0.0013	0.0055	0.0062	0.0116	0.0077	0.0108	0.0097	0.0224
KI	-0.0154	0.0023	-0.0150	-0.0344	-0.0179	0.0033	-0.0167	-0.0269
RbCl	0.0181	0.0017	0.0174	0.0044	0.0227	0.0021	0.0191	0.0045
CsCl	0.0118	0.0018	0.0117	-0.0017	0.0132	0.0074	0.0122	0.0143

B values of alkali halides in 1.0000 M aqueous thiourea solution

 a Eqn. (1), Jones-Dole equation.

 b Eqn. (2), Goldsack-Franchetto equation.</sup>

 C Eqn. (3), Breslau-Miller equation.

All these values are presented in Table 1. Slight differences in the values of *B* coefficients could be attributed to different approximations involved in the derivation of these equations.

The coefficient D in the modified Jones-Dole equation includes solute-solute interactions and also those solute-solvent interactions that were not accounted for by the *BC* term in the Jones-Dole equation at higher concentrations [12]. The values of D are in general higher in the ternary systems compared to the corresponding values in aqueous systems. It has been shown that an estimate of the influence of long-range Coulombic forces on D can be obtained from conductivity measurements [13]. The contribution is of the order of 0.003 to the value of D and is certainly not negligible with alkali halide solutions in our investigations. The values of *B* coefficients of the electrolytes in general are slightly higher than in pure water and this could be attributed to the structure-breaking properties of the co-solute thiourea [14].

Values of ionic parameters ^a of alkali halides in 1.0000 M aqueous thiourea solution

TABLE₂

123

Ionic B_+ coefficients at various temperatures were calculated according to the procedures described by Kaminsky [15] and are presented in Table 2. The high values of the B_+ coefficients found for Li^+ , Na⁺ and F⁻ ions with $d B_{+}/dT < 0$ show that the ions are strongly solvated in aqueous thiourea solutions and behave as structure-makers. In contrast, the low B_+ coefficient values with $dB_+/dT > 0$ for K⁺, Rb⁺, Cs⁺, Cl⁻, Br⁻ and I⁻ ions show that they interact weakly with the solvent molecules and act as structure-breakers. Ionic molar volumes V_+ can be obtained from the B_+ values by employing Einstein's equation [16]

$$
B_{\pm} = 2.5 \overline{V}_{\pm} \tag{6}
$$

and the hydration number N_B can be calculated [17] from the equation

$$
\overline{V}_{\pm} = \overline{V}_{\text{ion}}^{\Theta} + N_{\text{B}} \overline{V}_{\text{s}}^{\Theta} \tag{7}
$$

The values of N_B and \overline{V}_\pm are presented in Table 2. According to Millero [17] and Curthoys and Mathieson [18], structure-makers are characterised by $dN_{\rm B}/dT < 0$ and structure-breakers by $dN_{\rm B}/dT > 0$; one can conclude from an examination of Table 2, that Li^+ , Na⁺ and F⁻ are structure-makers and K^+ , Rb^+ , Cs^+ , Cl^- , Br^- and I^- are structure-breakers in aqueous thiourea solutions. The negative hydration numbers for the structure-breaking ions could be attributed to the ability of these ions in solution to disrupt the water structure by pushing the water molecules apart in both primary and secondary hydration spheres around them [19,20].

According to Krestov [21], a linear relationship exists between hydration number and ionic radius. The linearity depends on the charge of the ions involved. Different linear relationships are observed when N_B is plotted against ionic radius or B_+ coefficients (Figs. 1 and 2). From the magnitude of hydration numbers, one can conclude that the structure-breaking ability of various ions in aqueous thiourea solutions at 298 K is in the order $I^- > Br^- > Cs^+ > Rb^+ > Cl^- > K^+ > Na^+ > F^- > Li^+.$

The Gibbs energy of activation $\Delta G_{\text{vis}}^{\#}$ flow of a solution for a given composition can be calculated using the equation of Eyring and co-workers $[22]$

$$
\Delta G_{\rm vis}^{\#} = RT \, \ln(v\eta/hN) \tag{8}
$$

The ΔG_{vis}^* values thus determined at different temperatures for a given composition were fitted

$$
\Delta G_{\rm vis}^{\#} = a + bT + cT^2 \tag{9}
$$

The entropy and enthalpy of activation ($\Delta S_{\rm vis}^{\#}$ and $\Delta H_{\rm vis}^{\#}$, respectively) were then obtained according to

$$
\Delta S_{\rm vis}^{\#} = -\frac{\partial}{\partial T} \left(\Delta G_{\rm vis}^{\#} \right) \tag{10}
$$

$$
\Delta H_{\rm vis}^{\#} = \Delta G_{\rm vis}^{\#} + T \Delta S_{\rm vis}^{\#} \tag{11}
$$

Fig. 1. Plot of hydration number versus Pauling's radii for alkali metal halides in 1 M aqueous thiourea solution at 298 K.

The dependencies of these thermodynamic parameters on composition were fitted into the following empirical equation as suggested by Tamamushi and Isono [23]

$$
\Delta Y_{\text{vis}}^{\#} = \Delta Y_{\text{vis}}^{\ \Theta} + \beta_{y} X + \gamma_{y} X^{2} \qquad (y = G, H \text{ and } S)
$$
 (12)

where ΔY^{Θ} is the activation parameter for the solvent and X is the mol fraction of the solute. The relationship among β_{y} and γ_{y} is given by

$$
\beta_G = \beta_H - T\beta_S \qquad \gamma_G = \gamma_H - T\gamma_S \tag{13}
$$

Then coefficients were determined by least-squares methods and are presented in Table 3. Initial effects of solutes on the activation parameters for viscous flow can be discussed in terms of β_{ν} coefficients. The initial increase in the activation parameters ΔY_{vis}^+ with an increase in concentration is represented by positive values for β_{ν} coefficients. A positive β_{H} means an initial increase in ΔH_{vis}^+ with increasing concentration resulting from an increase in the degree of bonding or association around the solute in solution, and a positive β_s may be due to the appearance of local structural order in the solution [24,25]. It is observed that normally for structure-break-

Fig. 2. Plot of hydration number versus ionic B coefficients for alkali metal halides in 1 M aqueous thiourea solution at 298 K.

ing ions the values of β_G , β_H and β_S are negative and for the structure-making ions $\beta_G > 0$ and β_H and $\beta_{\gamma} < 0$.

One can also classify the behavior of electrolytes from the dependence of

TABLE 3

Values of β and γ coefficients of alkali metal halides in 1.0000 M aqueous thiourea solution at 298 K a

Salt	β_{G}	γ_G	β_H	Yн	β_S	γ_S
LiCl	18.4	44.5	-1.5	152.2	-0.07	0.40
NaCl	12.8	76.4	-14.4	47.2	-0.09	-0.09
NaBr	9.1	103.2	-151.7	1489.2	-0.54	4.67
NaI	8.4	20.9	-258.6	520.5	-0.90	1.67
KF	21.9	-0.3	27.8	-252.3	0.07	-8.06
KCI	3.9	8.3	9.3	-64.7	-0.23	-0.01
KBr	-1.4	74.3	-109.6	961.2	-0.36	2.97
KI	-2.7	82.2	-116.4	1548.3	-0.38	4.91
RbCl	-0.7	84.8	-107.0	991.7	-0.36	3.10
CsCl	-2.7	131.6	-176.0	2489.1	-0.58	7.97

^a Values of ΔG , ΔH in kJ mol⁻¹, and ΔS in kJ mol⁻¹ K⁻¹.

TARLE 4

Thermodynamic parameters of activation of flow at infinite dilution of alkali halides in 1.0000 M aqueous thiourea solution^a

^a Values in kJ mol⁻¹; (solvent = 9.32 kJ mol⁻¹).

thermodynamic properties of viscous flow on concentration. It is observed [1–4] that normally for all structure-making electrolytes, $\Delta H_{\text{vis}}^{\#}$ is independent of concentration whereas $\Delta S_{\text{vis}}^{\#}$ decreases and $\Delta G_{\text{vis}}^{\#}$ increases with concentration. For structure-breaking electrolytes $\Delta G_{\text{vis}}^{\#}$ remained constant within experimental error up to high concentrations. This effect is probably due to complete compensation for change in $\Delta H_{\text{vis}}^{\#}$ with concentration by the ΔS_{vis}^* .

The limiting values of the activation parameters at infinite dilution of the electrolytes were calculated according to the procedures of Feakins et al. [26] and are presented in Table 4. According to the authors, the free energy change in $\Delta \mu_2^{\Theta^{\#}}$ is always greater than that of the pure solvent $\Delta \mu_1^{\Theta^{\#}}$ for structure-makers. From the data of Table 4, one can conclude that LiCl. KCl. KF and sodium halides are acting as structure-makers at infinite dilution. This may be due to dominance of the structure-making ability of cations over anions like Br⁻ and I⁻ at infinite dilution. Except for Li⁺, Na⁺ and F⁻, the values of $T \Delta S_2^{\Theta^{\#}}$ and $\Delta H_2^{\Theta^{\#}}$ are negative, indicating that formation of the activation complex is associated with bond making and increase in order. A plot of $\Delta H_2^{\Theta^{\#}}$ versus $T \Delta S_2^{\Theta^{\#}}$ indicates a linear relationship between these parameters and the linearity depended on the ability of structure-making or -breaking properties (Fig. 3).

The apparent molal volumes of electrolytes have been calculated for several concentrations of electrolyte solutions from the corresponding densities using [27]

$$
\phi_{\rm v} = \frac{1000 \ (d_0 - d)}{m d d_0} + \frac{M_2}{d} \tag{14}
$$

The apparent partial molal volume (ϕ_{ν}^{\oplus}) at infinite dilution is obtained

Fig. 3. The relationship between $\Delta H_2^{\Theta \#}$ and $T \Delta S_2^{\Theta \#}$ at 298 K.

using Masson's equation [28]

$$
\phi_{\rm v} = \phi_{\rm v}^{\rm o} + S_{\rm v}(m)^{1/2} \tag{15}
$$

where *m* is the molality and S_v is the experimental slope. The values obtained are listed in Table 5. The values of ϕ_v^{Θ} and S_v are in general higher than in pure water and the values are indicative of solute-solvent interaction and ion-ion interaction respectively [27].

TABLE 5

Values of partial molal volume ϕ_v^{Θ} and the experimental slope S_v of alkali halides in 1.000 M aqueous thiourea solution at 298 K

Salt	ϕ_v^{Θ} $(ml \text{ mol}^{-1})$	$S_{\rm v}$	
LiCl	21.04	0.9424	
NaCl	17.77	1.6177	
KCl	27.95	1.7435	
RbCl	33.43	1.2524	
CsCl	40.78	1.2310	
NaBr	24.70	1.3374	
KBr	34.94	1.3687	
NaI	36.25	0.9823	
KI	46.31	1,1460	

TABLE 6

Values of sound velocity, compressibility and free volume of akah halides in 1.0000 M aqueous thiourea solution at 298 K

Electrolyte	Conc. (M)	$U(m s^{-1})$	$\beta_{\rm s}\times10^{+6}$ (bar)	$V_{\rm f} \times 10^{-2}$ (cm ³)
LiCl	0.10	1528.4	4.20	2.004
	$0.20\,$	1534.0	4.16	1.980
	0.50	1549.3	4.06	1.906
	0.75	1561.4	3.96	1.830
	1.00	1575.1	3.87	1.771
NaCl	0.10	1530.2	4.18	2.010
	0.20	1537.7	4.13	2.010
	0.50	1552.1	4.00	1.980
	0.75	1566.0	3.90	1.970
	1.00	1580.8	3.79	1.930
NaBr	0.10	1524.7	4.19	2.030
	0.20	1528.4	4.14	2.050
	0.50	1536.1	4.01	2.080
	0.75	1542.5	3.91	2.090
	1.00	1549.8	3.81	2.090
NaI	0.10	1520.9	4.20	2.047
	0.20	1520.7	4.16	2.064
	0.50	1520.1	4.04	2.149
	0.75	1518.9	3.95	2.206
	1.00	1519.3	3.86	2.286
KF	0.10	1530.4	4.17	2.012
	0.20	1537.2	4.12	2.019
	0.50	1559.0	3.95	1.998
	0.75	1577.1	3.82	1.985
	1.00	1593.0	3.70	1.959
KCl	0.10	1524.9	4.21	2.038
	0.20	1533.7	4.14	2.067
	0.50	1547.7	4.01	2.127
	0.75	1559.0	3.91	2.178
	1.00	1570.6	3.82	2.230
KBr	0.10	1524.0	4.19	2.057
	0.20	1525.9	4.15	2.101
	0.50	1531.3	4.03	2.229
	0.75	1535.0	3.93	2.327
	1.00	1539.0	3.84	2.437
KI	0.10	1521.1	4.20	2.074
	0.20	1518.9	4.16	2.125
	0.50	1514.6	4.05	2.279
	0.75	1512.2	3.95	2.411
	1.00	1509.3	3.87	2.543
CsCl	0.10	1520.7	4.19	2.077
	0.20	1520.6	4.14	2.136
	0.50	1518.1	4.01	2.306
	0.75	1515.7	3.92	2.442
	1.00	1513.8	3.82	2.578

Fig. 4. Plot of V_t versus molarity of thiourea in aqueous solution at different temperatures.

Free volumes at all concentrations and temperatures were calculate using [29]

$$
V_{\rm f} = \left(\overline{M}U/K\eta\right)^{3/2} \tag{16}
$$

where \overline{M} is the average molecular mass, U is the ultrasonic velocity, η is the viscosity of the solution and K is a constant equal to 4.28×10^5 ; computed V_f values are represented in Table 6. Adiabatic compressibilities (β_s) were also calculated and are included in Table 6. Examination of Table 6 indicates that the free volume dependence on concentration depends on the type of electrolyte. For net structure-makers like LiCI, NaCl, and KF, the free volume decreases with an increase in concentration of the electrolyte at all temperatures. One can conclude that the high charge density of structure-making ions dominates in the ordering of the solution resulting in a decrease in free volume. In the case of other electrolytes, the structurebreaking properties of the ions dominate, resulting in an increase in free volume with increase in concentration of electrolytes. Free volumes of thiourea in aqueous solutions were also determined and the values increase with increase in concentration of thiourea indicating that thiourea is acting as a structure-breaker in aqueous solutions (Fig. 4).

CONCLUSIONS

Thermodynamic activation parameters of viscous flow, *B* coefficients, hydration numbers and their dependence on temperature are found to be

very valuable in differentiating the structure-making and structure-breaking properties of electrolytes in solution. From the measured viscosity and ultrasonic velocity values one can obtain free volumes (V_f) . It is found that the dependence of this parameter on concentration further elucidates the structure-making or structure-breaking properties of the electrolytes in solution.

ACKNOWLEDGEMENTS

The financial support of the Council for the Evaluation of Research Proposals of the University College of Cape Breton is appreciated. The authors also acknowledge the National Science and Engineering Research Council for the undergraduate summer research fellowships to G.M. and G.W. (1985).

REFERENCE

- 1 R. Palepu, R. Johnson and W. Rolls, Electrochim. Acta, 30 (1985) 69.
- 2 H. MacDonald, G. Marangoni and R. Palepu, Thermochim. Acta, 84 (1985) 157.
- 3 R. Palepu and H. Macdonald, Thermochim. Acta, 87 (1985) 151.
- 4 R. Palepu, C. Fidgen and K. Hennessey, Z. Phys. Chem. (Leipzig), 5 (1985) 962.
- 5 S.O. Pillai, S. Natarajan and P.K. Pananisami, J. Acoust. Soc. Am., 73 (1983) 1616.
- 6 C.V. Suryanarayana and J. Kuppusami, J. Acoust. Sot. India, 4 (1976) 75.
- 7 R.L. Kay, Ad. Chem. Ser. 15 (1968) 73.
- 8 E.R. Nightingale, in B.E. Conway and R. Barradas (Eds.), Chemical Physics of Ionic Solutions, Wiley, New York, 1966 p. 87.
- 9 D. Jones and M. Dole, J. Am. Chem. Soc., 51 (1929) 2950.
- 10 S.W. Goldsack and R. Franchetto, Can. J. Chem., 55 (1977) 1062.
- 11 B.R. Breslau and I.F. Miller, J. Phys. Chem., 74 (1970) 1056.
- 12 S. Paljik and C.J. Klofutar, Chem. Soc., Faraday Trans. 1, 74 (1987) 2159.
- 13 J. Desnoyers and G. Perron, J. Solut. Chem., 1 (1972) 198.
- 14 S. Taniewska-Osinka and B. Palecz, J. Chem. Thermodyn., 12 (1980) 775.
- 15 M. Kaminsky, Discuss. Faraday Soc., 2 (1957) 171.
- 16 A. Einstein, Ann. Phys., 19 (1906) 289.
- 17 F.J. Millero, Chem. Rev., 71 (1971) 147.
- 18 G. Curthoys and J.G. Mathieson, Trans. Faraday Soc., 66 (1970) 43.
- 19 C.A. Engel and E.J. Sare, J. Chem. Phys., 52 (1969) 1058.
- 20 0. Ya Somoilov, in R.A. Horne (Ed.), Water and Aqueous Solution, Wiley Interscience, New York, 1972.
- 21 G.A. Krestov, Zh. Strukt. Khim., 8 (1962) 402.
- 22 S. Gladstone, K.J. Laidler and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York, 1941.
- 23 R. Tamamushi and T. Isono, J. Chem. Soc., Faraday. Trans. 1, 80 (1984) 2751.
- 24 M.L. Miller and M. Doran, J. Phys. Chem., 60 (1956) 186.
- 25 R.H. Stokes and R. Mills, Viscosity of Electrolytes and Related Properties, Pergamon Press, Oxford, 1965.
- 26 D. Feakins, D.F. Freemantle and K.G. Lawrence, J. Chem. Soc., Faraday Trans. 1, 70 (1974) 795.
- 27 H.S. Hamed and B.B. Owen, Physical Chemistry of Electrolyte Solutions, Reinhold, New York, 1958, p. 358.
- 28 D.O. Masson, Philos. Mag., 8 (1929) 218.
- 29 C.V. Suryanarayana, J. Acoust. Soc. India, 7 (1979) 107.